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late-time universe comes from the positive energy and the negative pressure which behave

like dark energy source in recent cosmological models.
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1. Introduction

One of the intriguing issues is not only to describe the late-time accelerated expansion of our

universe but also to explain the smooth transition from decelerating phase to accelerating

one. In the context of Einstein theory of general relativity, the accelerating universe means

that the parameter ω ≡ p/ε of equation of state [1] is negative, where ε and p are the

energy density and the pressure, respectively. So, in the ordinary Friedmann equation,

the energy density is assumed to be positive while the pressure is negative. Even more

ω < −1 can be required to compensate the effect of ordinary matters in our universe. In

some sense, it implies that the state parameter may depend on time and make it possible

to explain the transition from decelerating phase to accelerating one. In the quintessence

model based on supergravity or M/string theory, the transition has been studied in terms

of the numerical simulation [2].

On the other hand, a two-dimensional dilaton gravity may be useful in studying the

transition from the decelerated phase and the accelerated phase because there are fewer

degrees of freedom rather than the four-dimensional counterpart. Furthermore, there exist

exactly soluble models semiclassically [3 – 8], whose quantum back reactions of the geometry

are easily treated so that various cosmological problems have been studied in refs. [7, 9 –

13]. However, in even this semiclassically soluble gravity, it is difficult to realize the smooth

phase transition because the solution shows the only decelerating or accelerating behavior.

Recently, it has been shown that it is possible to obtain the transition from decelerating

phase to accelerating one by assuming the modified Poisson brackets [14] corresponding

to noncommutativity of fields [15 – 17]. Unfortunately, the future singularity appears at

finite time in this model, and the decelerated geometry has been patched by hand for the

regularity.

So, in this paper, we would like to study the smooth phase transition from the decel-

erated expansion to accelerated expansion without any curvature singularity in the Bose-

Parker-Peleg (BPP) model [6], which is one of the exactly soluble model semiclassically.
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In particular, even though the classical cosmological constant is not assumed, the initial

state is asymptotically anti-de Sitter (AdS) and the late time behavior of our universe is

asymptotically de Sitter (DS). This interesting feature is due to the noncommutativity in

the modified Poisson algebra. In section 2, we find the semiclassical Hamiltonian in the

BPP model and also define semiclassical energy-momentum tensors, and obtain the energy

density and the pressure in view of a perfect fluid. In section 3, solving the semiclassical

Hamiltonian equations of motion with the ordinary Poisson brackets in the BPP model, we

obtain the accelerated expansion solution. In section 4, we will take the modified Poisson

brackets instead of the conventional Poisson algebra. Under some conditions for integration

constants, the solution shows that the smooth transition from AdS (decelerating) phase at

the past infinity to DS (accelerating) phase is possible. Finally, some discussions are given

in section 5.

2. Hamiltonian and energy-momentum tensors

In the low-energy string theory, the two-dimensional dilaton gravity are described by

SDG =
1

2π

∫

d2x
√
−ge−2φ

[

R + 4(∇φ)2 + 4λ2
]

, (2.1)

and the conformal matter fields is given as

Scl =
1

2π

∫

d2x
√−g

[

−1

2

N
∑

i=1

(∇fi)
2

]

, (2.2)

where φ and fi’s are the dilaton and the conformal matter fields, respectively. We set

the vanishing cosmological constant λ2 = 0 for simplicity in what follows. The quantum

effective action for the conformal matter (2.2) is written as

Sqt =
κ

2π

∫

d2x
√−g

[

−1

4
R

1

¤
R + (∇φ)2 − φR

]

, (2.3)

where κ = (N−24)/12. The first term in eq. (2.3) comes from the Polyakov effective action

of the classical matter fields [3, 5] and the other two local terms have been introduced

in order to solve the semiclassical equations of motion exactly [6]. The higher order of

quantum correction beyond the one-loop is negligible in the large N approximation where

N → ∞ and ~ → 0, so that κ is assumed to be positive finite constant.

In order to study consider the quantum back reaction semiclassically, we take the total

action as

S = SDG + Scl + Sqt. (2.4)

In the conformal gauge, ds2 = −e2ρdx+dx−, the total action and the constraint equations

are written as

S =
1

π

∫

d2x

[

e−2φ (2∂+∂−ρ − 4∂+φ∂−φ) − κ(∂+ρ∂−ρ + 2φ∂+∂−ρ

+∂+φ∂−φ) +
1

2

N
∑

i=1

∂+fi∂−fi

]

(2.5)
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and

e−2φ
[

4∂±ρ∂±φ − 2∂2
±φ

]

+
1

2

N
∑

i=1

(∂±fi)
2 + κ

[

∂2
±ρ − (∂±ρ)2

]

−κ
(

∂2
±φ − 2∂±ρ∂±φ

)

− κ (∂±φ)2 − κt± = 0, (2.6)

where t± reflects the nonlocality of the induced gravity of the conformal anomaly. Then,

we take the vanishing classical matter, fi = 0 in order to take into account only the

quantum-mechanically induced source. Defining new fields as [4, 6]

Ω = e−2φ, (2.7)

χ = κ(ρ − φ) + e−2φ, (2.8)

the gauge fixed action is obtained in the simplest form of

S =
1

π

∫

d2x

[

1

κ
∂+Ω∂−Ω − 1

κ
∂+χ∂−χ

]

(2.9)

and the constraints are given by

κt± =
1

κ
(∂±Ω)2 − 1

κ
(∂±χ)2 + ∂2

±χ. (2.10)

In the homogeneous space, using the relations of x± = t ± x, the Lagrangian and the

constraints are obtained,

L =
1

2κ
Ω̇2 − 1

2κ
χ̇2, (2.11)

0 =
1

4κ
Ω̇2− 1

4κ
χ̇2 +

1

4
χ̈ − κt± (2.12)

where the action is redefined by S/L0 = 1
π

∫

dtL with L0 =
∫

dx, and the overdot denotes

the derivative with respect to the conformal time t. Then, the Hamiltonian becomes

H =
κ

2
P 2

Ω − κ

2
P 2

χ (2.13)

in terms of the canonical momenta Pχ = − 1
κ χ̇, PΩ = 1

κ Ω̇.

Since the semiclassical energy-momentum tensors are defined by T qt
µν ≡

−(2π/
√−g)(δSqt/δg

µν), they can be written as

T qt
±± = −κt± + κ∂2

±(χ − Ω) − κ[∂±(χ − Ω)]2

= −κt± +
1

4
(χ̈ − Ω̈) − 1

4κ
(χ̇ − Ω̇)2, (2.14)

T qt
+− = −κ∂+∂−(χ − Ω)

= −1

4
(χ̈ − Ω̈). (2.15)

They can be regarded as a perfect fluid written in the form of

T qt
µν = pgµν + (p + ε)uµuν , (2.16)
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where ε and p are the energy density and the pressure, respectively, and uµ is the 4-

velocity vector field of flow. In the comoving coordinate, ds2 = −dτ2 + a2(τ)dx2, the

4-velocity is given by uµ = (1, 0), and then we can obtain the distributions of the energy

density and the pressure. Note that the comoving time are related to the conformal time,

τ =
∫

eρdt =
∫

Ω−1/2 exp[(1/κ)(χ − Ω)]dt. Then, the energy density and pressure are

written as

ε = T qt
ττ = e−2ρ(T qt

++ + 2T qt
+− + T qt

−−), (2.17)

p =
1

a2
T qt

xx = e−2ρ(T qt
++ − 2T qt

+− + T qt
−−). (2.18)

Note that the state parameter ω has been defined as the equation of state p = ωε.

3. Accelerated universe with conventional Poisson brackets

In this section, we would like to recapitulate the evolution of the two-dimensional universe

by solving the semiclassical equations of motion in the BPP model. Even if the solutions

can be obtained directly from the Lagrangian equations of motion, we will solve them in

terms of the Hamiltonian formulation since the latter case is more convenient to modify

the original equations of motion. Let us now define the conventional Poisson brackets,

{Ω, PΩ}PB = {χ,Pχ}PB = 1, others = 0 (3.1)

and then the Hamiltonian equations of motion in ref. [18] are given by Ȯ = {O,H}PB

where O represents fields and corresponding momenta. Then they are explicitly written as

χ̇ = −κPχ, Ω̇ = κPΩ, (3.2)

Ṗχ = 0, ṖΩ = 0. (3.3)

Since the momenta PΩ and Pχ are constants of motion, we can easily obtain the solutions,

Ω = κPΩ0
t + A0, (3.4)

χ = −κPχ0
t + B0, (3.5)

where PΩ = PΩ0
, Pχ = Pχ0

, A0, and B0 are arbitrary constants. From the definition (2.7),

the solution Ω in eq. (3.4) must be positive. This leads to three cases of conformal time t:

one is t > A0/(κPΩ0
) with PΩ0

> 0, another is t < A0/(κPΩ0
) with PΩ0

< 0, and the other

is −∞ < t < ∞ with PΩ0
= 0 and A0 > 0.

Next, the dynamical solutions (3.4) and (3.5) should by satisfied with constraint (2.12),

which results in

κt± =
κ

4
(P 2

Ω0
− P 2

χ0
). (3.6)

Note that the integration functions t± determined by the matter state are time-

independent. On the other hand, by using eqs. (3.4) and (3.5), the curvature scalar is

calculated as

R =
2

a

d2a

dτ2
= κ2P 2

Ω0
e−2ρ+4φ = κ2P 2

Ω0

e−2B0+2κPχ0
t

A0 + κPΩ0
t

≥ 0, (3.7)
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where the equality corresponds to the case of PΩ0
= 0 and A0 > 0, in other words, which

means flat spacetime.

Plugging the constraint (3.6) into eqs. (2.14) and (2.15), the induced energy-momentum

tensors are explicitly written as

T qt
±± = −κ

2
PΩ0

(PΩ0
+ Pχ0

), (3.8)

T qt
+− = 0, (3.9)

which yields from eqs. (2.17) and (2.18),

ε = p = −κPΩ0
(PΩ0

+ Pχ0
)(κPΩ0

t + A0) exp

[

2

κ
(A0 − B0) + 2(PΩ0

+ Pχ0
)t

]

. (3.10)

Note that the state parameter is simply ω = 1 in this semiclassical case, and the curvature

scalar which is proportional to the acceleration is always positive under the condition of

Ω > 0. So, there is no phase transition from the deceleration to the acceleration, and we

can not obtain the AdS-DS phase transition.

4. AdS-DS phase transition with modified Poisson brackets

In this section, we now study whether the phase change of the universe is possible or not

in the context of the modified semiclassical equations of motion. The similar analysis to

the previous section will be done along with the noncommutative algebra [15, 19],

{Ω, PΩ}MPB = {χ,Pχ}MPB = 1,

{χ,Ω}MPB = 0, {Pχ, PΩ}MPB = θ, others = 0, (4.1)

where θ is a positive constant. Note that our starting semiclassical action seems to be

quantized one more, however, this is not the case since these modified Poisson brackets

are simply the counterpart of the conventional Poisson brackets which are not quantum

commutators. If the fields had been taken as operators by decomposing the positive and

the negative frequency modes along with the normal ordering, then it would be the quan-

tization of a quantization. But our modified Poisson brackets just modify the conventional

(semiclassical) Hamiltonian equations of motion, which still result in the semiclassical so-

lutions, of course, they are θ-dependent due to the modification of the Poisson brackets.

Using the Hamiltonian (2.13), the previous equations of motion are promoted to the

followings,

χ̇ = {χ,H}MPB = −κPχ, Ω̇ = {Ω,H}MPB = κPΩ, (4.2)

Ṗχ = {Pχ,H}MPB = κθPΩ, ṖΩ = {PΩ,H}MPB = κθPχ. (4.3)

Note that the momenta are no more constants of motion because of nonvanishing θ, hereby,

a new set of equations of motion from eqs. (4.2) and (4.3) are obtained,

χ̈ = −κθΩ̇, Ω̈ = −κθχ̇. (4.4)
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Of course, the parameter θ is independent of the quantization where the modified semi-

classical equations of motion (4.3) is reduced to eq. (3.3) for θ → 0. From the coupled

equations of motion (4.4), we obtained the solutions as

Ω = e−2φ = αe−κθt + βeκθt + A, (4.5)

χ = e−2φ + κ(ρ − φ) = αe−κθt − βeκθt + B, (4.6)

where κ has been assumed to be a positive constant, and α, β, A, and B are constants

of integration. Since Ω should be positive in eq. (4.5), the constants α, β, and A are

appropriately restricted. Then, the scale factor and the expanding velocity are given as

a(τ) = eρ(t) =
exp[− 1

κ(A − B) − 2
κβeκθt]

√

αe−κθt + βeκθt + A
, (4.7)

da

dτ
= ρ̇ =

1

2
θ
κ(αe−κθt − βeκθt) − (2βeκθt + A)2 + A2 − 4αβ

αe−κθt + βeκθt + A
, (4.8)

respectively, where we used dt/dτ = e−ρ(t) and a(τ) = eρ(t). The overdot denotes the

derivative with respect to t and comoving time τ is related to conformal time t by τ =
∫

eρ(t)dt, which can be explicitly calculated from the scale factor (4.7). Subsequently, the

acceleration and the curvature scalar are calculated as

d2a

dτ2
= e−ρρ̈ =

1

2
κθ2 exp[ 1

κ(A − B) + 2
κβeκθt]

√

αe−κθt + βeκθt + A

[

κ
A2 − 4αβ

αe−κθt + βeκθt + A

−(2βeκθt + A)2 − 4αβ + A2 − κA

]

, (4.9)

R =
2

a

d2a

dτ2
= κθ2 exp

[

2

κ
(A − B) +

4

κ
βeκθt

] [

κ
A2 − 4αβ

αe−κθt + βeκθt + A

−(2βeκθt + A)2 − 4αβ + A2 − κA

]

, (4.10)

respectively.

In order to describe the smooth transition from the decelerated phase to the accelerated

universe, eventually, from the AdS to the DS phase, we will consider the special case of

α > 0, β > 0, and A < −κ with the condition A2 = 4αβ in what follows. These constants

tells us that the range of the conformal time is t < (κθ)−1 ln(−A/2β) as seen from eq. (4.5),

and then the range of the comoving time should be τ > 0. Under this restriction, the

expanding velocity da/dτ is always positive and the scale factor increases from zero to

infinity. Note that τ(t) is a monotonic increasing function with respect to t. On the other

hand, the acceleration d2a/dτ2 is zero at the initial time τ = 0 and is negative before

τ = τ1, where τ1 =
∫ t1
−∞

eρ(t)dt where t1 = (κθ)−1 ln[(2β)−1(−A −
√
−κA)]. After τ = τ1,

the acceleration becomes positive, which shows the smooth phase transition. Although

the acceleration diverges as τ goes to infinity, but there exists no curvature singularity as

shown in figure 1 due to the infinite scale factor. In fact, the curvature scalar is almost

negative constant, R ≈ −A(κ + A)κθ2 exp[ 2
κ(A − B)] < 0, around τ = 0 and it becomes

– 6 –
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2 4 6 8 10 12
Τ

1

2

3

4

The Acceleration and The Curvature Scalar

Figure 1: The solid line and the dashed line denote the curvature scalar and the acceleration of

the scale factor, respectively. The dotted line is an asymptotic value of the curvature scalar as τ

goes to infinity. Note that the comoving time is defined by τ > 0. The curvature scalar comes to be

a negative constant around τ = 0 and a positive constant as τ goes to infinity. This fact indicates

that there is the phase transition from anti-de Sitter universe to de Sitter universe. This figure is

plotted in the case of α = 1, β = 1, A = −2, B = 1, κ = 1, and θ = 4 in this BPP model.

2 4 6 8 10 12
Τ

-8

-6

-4

-2

2
¶HΤL, pHΤL, and ΩHΤL

Figure 2: The solid, the dashed, and the dotted lines denote the energy density, the pressure, and

the state parameter of perfect fluid. Note that the pressure is always negative, so that the state

parameter can be exotic. This figure is plotted with the same constants used in figure 1.

zero at τ = τ1, and then approaches the positive constant, R ≈ −Aκ2θ2 exp(− 2
κB) > 0, at

τ → ∞. This fact shows that the phase transition from AdS universe to DS appears.

Now, the solutions (4.5) and (4.6) should be satisfied with the constraint (2.12), which

determines the integration function κt±,

κt± =
1

4
κθ2

[

κ(αe−κθt − βeκθt) − 4αβ
]

. (4.11)
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Then, the induced energy-momentum tensors (2.14), and (2.15) are obtained as

T qt
±± = −1

4
κθ2

[

κ(αe−κθt + βeκθt) − 4βeκθt(αe−κθt − βeκθt)
]

, (4.12)

T qt
+− =

1

2
βκ2θ2eκθt. (4.13)

Using eqs. (2.17) and (2.18), the energy density, the pressure are explicitly given as

ε = −1

2
κ2θ2e2κθt(αe−κθt + βeκθt + A)(αe−κθt − βeκθt)

(

1 − 4

κ
βeκθt

)

, (4.14)

p = −1

2
κ2θ2e2κθt(αe−κθt + βeκθt + A)

[

αe−κθt + 3βeκθt − 4

κ
eκθt(αe−κθt − βeκθt)

]

, (4.15)

so that the state parameter ω(τ(t)) reads

ω =
αe−κθt + 3βeκθt − 4

κeκθt(αe−κθt − βeκθt)

(αe−κθt − βeκθt)
(

1 − 4
κβeκθt

) (4.16)

where its profile is plotted in figure 2 for the special case giving the AdS-DS transition. The

energy density and the pressure are the same value of −1/2α2κ2θ2 approximately at the

initial time τ = 0 corresponding to t → −∞, and then the state parameter becomes ω ≈ 1.

The energy density becomes zero at the comoving time τ = τ2, where τ2 =
∫ t2
−∞

eρ(t)dt

where t2 ≡ [1/(κθ)] ln[κ/(4β)]. It changes from negative value to positive around τ = τ2,

but the pressure is always negative. The state parameter diverges at τ2 since the energy

density vanishes faster than the pressure. The decelerated expansion of the early universe

is due to the negative energy density with the negative pressure induced by quantum back

reaction (ω > 0), and the accelerated late-time universe comes from the positive energy

and the negative pressure which behave like dark energy source (ω < 0).

5. Discussion

We have shown that the phase changing transition from the AdS to the DS phase is possible

by assuming the modified Poisson brackets to the semiclassical equations of motion in the

BPP model. The usual BPP model does not generate this kind of transition since the

integration function t± related to the vacuum state is trivially constant, and the equation

of state parameter is simply one which is independent of the time. So, we have taken the

nontrivial Poisson brackets at the semiclassical level to overcome this triviality.

The modified Poisson brackets are not the quantum commutators so that it does not

mean the quantization of the quantization since the fields Ω and χ are not the operators. In

fact, the modified Poisson brackets can be applied to any stage of quantization in order to

modify the original equations of motion. For example, if one considers the modified Poisson

brackets at the classical dilaton gravity, then the corresponding solution can be obtained,

however, it is difficult to obtain the meaningful solution in spite of its complexity. The

other heuristic example may be a two-dimensional simple harmonic oscillator with the mass

m and the spring constant k, where its Hamiltonian is like H = (p2
x + p2

y)/(2m) + k(x2 +

– 8 –
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y2)/2. The conventional Poisson brackets generate the two independent set of Hamiltonian

equations of motion and then the well-known harmonic solutions are obtained. On the

other hand, at this classical level, if we assume the modified Poisson brackets, {x, px}MPB =

{y, py}MPB = 1, {px, py}MPB = θ, then the Hamiltonian equations of motion are modified

and the equations of motion can be written in the second order form of ẍ+ω2x = 2aẏ, ÿ +

ω2y = −2aẋ, where ω =
√

k/m and a = θ/(2m). The first order of Hamiltonian equations

of motion have been written in the form of the second order Euler-Lagrange equations of

motion in order to show the explicit difference between the noncommutative case and the

commutative case. Then, the solutions are x = x0 cos at cos(ω′t+ϕ1)+y0 sin at cos(ω′t+ϕ2),

y = y0 cos at cos(ω′t + ϕ2) − x0 sin at cos(ω′t + ϕ1), where ω′ ≡
√

ω2 + a2 and x0, y0, ϕ1,

and ϕ2 are constants of integration. Note that these are just modified classical solutions

rather than the quantum-mechanical ones.

The equation of state parameter is singular at a certain time as seen in figure 2. In

order for the phase transition from the ADS (ω > 0) to the DS universe (ω < 0), the state

parameter also changes its signature at a certain time, in our case at τ = τ2. In fact, there

are two options satisfying this condition. If the energy density is always positive then the

pressure should change its sign, however, in this model, the pressure is always negative, so

that the energy density should change its sign. The latter case gives the singular behavior.

Of course, the quantum-mechanically induced energy density allows the negative value.

One might wonder how to derive the nontrivial Poisson brackets which are similar

to the noncommutativity in string theory [19]. In the string theory, the noncommutative

brackets between the coordinates are derived in the D-brane system applied in the constant

external tensor field. This is a higher dimensional realization of the slowly moving point

particle on the constant magnetic field. All of these systems can be interpreted as constraint

systems [17], so we can expect our model may be a similar constraint system, however, it

remains unsolved.

The final comments are in order. The two-dimensional dilaton gravity is determined

by both the metric and the dilaton. In our model, at the end point, the dilaton is not

constant rather than it goes to infinity while it is a constant at the initial time. So, the

DS interpretation seems to be more or less awkward at the end point, however, we would

like to mention that the dilaton plays a role of string coupling, gs = eφ or a gravitational

coupling similarly to the Brans-Dicke theory. Therefore, we would like to interpret the

solution as a DS spacetime in a strong coupling regime at the end point. Note that in

the two-dimensional black hole model, the dilaton is not constant but linear even in the

Minkowski spacetime [3]. Secondly, the solution for the AdS-DS phase transition seems to

be non-generic so that it may depend on the special choice of the parameters. However, as

long as the following condition of α > 0, β > 0, and A < −κ with A2 = 4αβ is met, it is

always possible to obtain the desired phase changing solution.
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